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Abstract

In this paper, we present a new multistage approach for
SfM reconstruction of a single component. Our method be-
gins with building a coarse 3D reconstruction using high-
scale features of given images. This step uses only a frac-
tion of features and is fast. We enrich the model in stages by
localizing remaining images to it and matching and trian-
gulating remaining features. Unlike traditional incremental
SfM, localization and triangulation steps in our approach
are made efficient and embarrassingly parallel using geom-
etry of the coarse model. The coarse model allows us to
use 3D-2D correspondences based direct localization tech-
niques to register remaining images. We further utilize the
geometry of the coarse model to reduce the pair-wise im-
age matching effort as well as to perform fast guided fea-
ture matching for majority of features. Our method pro-
duces similar quality models as compared to incremental
SfM methods while being notably fast and parallel. Our al-
gorithm can reconstruct a 1000 images dataset in 15 hours
using a single core, in about 2 hours using 8 cores and in a
few minutes by utilizing full parallelism of about 200 cores.

1. Introduction
In recent years, large-scale 3D reconstruction from un-

structured photo collections has received significant atten-
tion of researchers [1, 2, 3, 4, 5, 6]. Most of these methods
divide a large-scale problem into many independent compo-
nents which are reconstructed using the incremental struc-
ture from motion pipeline. These approaches either attempt
to reduce the O(n2) complexity of large-scale pair-wise im-
age matching or provide fast approximations of bundle ad-
justment for speed up. Fewer attempts have been made to
rethink the incremental and strictly sequential SfM pipeline
used for the basic structure recovery of a single component.

In this paper, we re-evaluate the traditional incremental
SfM pipeline of [1] and propose a fast multistage frame-
work for SfM reconstruction of a single component. Our
approach produces similar or better quality models as com-
pared to the sequential methods while being embarrassingly

parallel. Our method first computes a coarse but global 3D
model of the scene using only high-scale SIFT [7] features
in each image. The coarse model can be reconstructed us-
ing any of the existing methods [1, 6, 5]. This is done rel-
atively quickly as only a small fraction of features are in-
volved, typically 10% to 20%. The resulting coarse model
has fewer cameras and points as compared to the model gen-
erated using all features. However, it is a global model, i.e.
these cameras and points are distributed across the mod-
eled space. We next add the remaining images to the coarse
model using a 3D-2D matching based localization proce-
dure [8, 4, 9, 10, 11]. The localization of each image is
independent of others and can be performed in parallel.
We then add more 3D points to the model by matching
and triangulating remaining SIFTs of the localized images.
This step is also embarrassingly parallel in number of im-
age pairs and significantly faster as it is guided by known
epipolar geometry of the coarse model. Guided matching
also produces denser correspondences as compared to fea-
ture matching with geometry-blind ratio-test. In our ex-
periments, the coarse model converges to a full-model re-
constructed using all SIFTs in only 1-2 iterations of above
steps. We show notably fast and high quality reconstruction
of several publicly available datasets.

We make the following contributions: (i) we propose
a coarse-to-fine, multistage approach for SfM which sig-
nificantly reduces the sequentiality of the incremental SfM
pipeline; (ii) we present an intelligent image matching strat-
egy that utilizes the point-camera visibility relations and
epipolar geometry of coarse model for geometry-guided im-
age selection and feature matching; (iii) we demonstrate
applicability of 3D-2D matching based localization tech-
niques in context of SfM and utilize it for simultaneous
camera pose estimation.

The goal of this paper is not to replace the standard
SfM techniques but to propose an alternate staging that can
bring forth parallelism in existing incremental pipelines.
Our design choices are largely motivated by analysis of the
3D models produced using the standard incremental SfM
pipeline. We hope that along with our framework, these in-
sights would also be useful to the SfM research community.
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2. Background and Related Work
Snavely et al. [1, 12] presented the first system for large-

scale 3D reconstruction by extending the incremental SfM
algorithm [13] to unstructured image collections. There are
two main steps to their reconstruction.

(i) Match-graph construction evaluates O(n2) pairwise
relationships for given n images using SIFT feature match-
ing. For each pair, all features in the first image are com-
pared with the features in second image using a kd-tree
based search and ratio-test. The time complexity of this
step is O(n2m logm), where m is the average number of
features in each image. (ii) Incremental SfM reconstructs
the cameras and points starting with a good seed image pair.
The reconstruction grows incrementally by adding one well
connected image, estimating its camera parameters, and tri-
angulating feature matches. To avoid drift accumulation,
this is followed by a global bundle adjustment (BA) which
refines camera poses and 3D point positions. The complex-
ity of the incremental SfM is O(n4) due to repeated BA.

Many researchers have attempted to approximate or sim-
plify these two stages of incremental SfM pipeline for com-
putational efficiency which is desirable and necessary for
large-scale reconstructions.

Match-graph Approximations Agarwal et al. [2] and
Frahm et al. [3] focused on scaling the SfM pipeline to city-
scale collections consisting of a million images. They use
global appearance similarity to quickly identify image pairs
that would potentially match. Learning based techniques
have also been proposed that reduce pairwise matching ef-
fort [14, 15]. In [2], a vocabulary-tree based image retrieval
technique is used to identify candidate image pairs. These
pairs are then verified by feature matching and epipolar ge-
ometry estimation. The resulting match-graph is divided
into many connected-components (CCs) using skeletal-sets
algorithm [16]. Each CC is reconstructed independently us-
ing incremental SfM with minor changes. [3] uses geo-tags
and global image features (GIST) to cluster images based
on their appearance and selects a representative/iconic im-
age for each valid cluster. Pair-wise relations across iconic
images are evaluated to identify many local iconic scene
graphs for each geographic site which are reconstructed in-
dependently using incremental SfM.

Since the primary focus of our work is on replacing the
incremental SfM step for geometry estimation, we only deal
with single component-datasets given to SfM. City-scale
datasets can be partitioned into approximate components
using appearance similarity and geo-location as in [2, 3].
Our approach fits particularly well with the pipeline of [3]
since it does not perform pairwise feature matching before
local scene graph verification. Within a single component,
our approach reduces the matching effort by (a) selecting
the image pairs to match using point-camera visibility rela-

tions in the coarse model and (b) using a fast guided feature
search to match the selected image pairs.

Wu [6] proposed an optimized reconstruction pipeline
(VisualSfM) with a preemptive matching (PM) scheme to
quickly eliminate non-promising image pairs. Preemptive
matching examines matches between a few (� 100) high-
scale features of an image pair and considers the pair for
full matching only if 2-4 matches are found among these
features. The pipeline beyond that is essentially that of in-
cremental SfM but it is highly optimized for performance.
Our use of high-scale features for coarse reconstruction is
motivated by similar observations as [6]. However, the role
of coarse reconstruction in our method goes beyond selec-
tion of image pairs to match; it guides the remaining stages
of our pipeline for both speed and to break the sequentiality
of incremental SfM.

Fast Bundle Adjustment Many methods have been pro-
posed that approximate the sparse bundle adjustment and
exploit many-core architectures providing significant speed
up [2, 17, 18, 19]. Wu [6] show that the recovered structures
become stable as they grow larger and require fewer itera-
tions of full-BA. Our method does not need to use bundle
adjustment after the coarse reconstruction stage. The coarse
model is usually stable and provides global coverage of the
modeled space, allowing us to avoid BA during point and
camera addition steps.

Non-incremental SfM Sinha et al. [20] proposed a van-
ishing point (VP) correspondence based non-sequential ap-
proach for SfM. Crandall et al. [5] formulate the problem
of SfM as one of finding a good estimate of camera param-
eters using MRFs and refining it using Bundle Adjustment.
This MRF formulation uses noisy GPS/geo-tags and VP
observations as unary terms and two-view geometry con-
straints as pairwise terms. As opposed to sequential SfM,
these methods are easy to parallelize and considers all im-
ages at once. However, they require priors like VP/geo-tags
whereas sequential SfM methods are purely image based.
We propose a multi-stage framework which combines the
generality of incremental SfM methods with performance
advantages of non-incremental techniques. We demonstrate
that with coarse-to-fine staging it is possible to alter the in-
cremental and strictly sequential SfM methods into a fast
and embarrassingly parallel pipeline.

Havlena et al. [21] and Gherardi et al. [22] proposed hi-
erarchical approaches that differ in methodology from our
pipeline but share similar spirit of avoiding fully sequen-
tial reconstruction. [21] finds candidate image triplets us-
ing visual words for atomic three image reconstructions and
merges them into a larger reconstruction. [22] organizes the
images into a balanced tree using agglomerative clustering
on the match-graph and builds a larger reconstruction by hi-
erarchically merging the separately reconstructed clusters.

2



 

 

 

 

 

3. Add Points 

 

 

 

 

 

 

Find Candidate Pairs 

Guided Matching 

Triangulation & Merging 

1. Coarse Global Model  
 

 

 

 

 

2. Add Cameras 

 

Compute Cover-set 

Compute Mean SIFTs  

3D-2D Localization 

Full Reconstruction Input Images, SIFTs 

Figure 1: Flow of our multi-stage algorithm

3. Overview of Multistage SfM Algorithm
The flow of our algorithm is depicted in Figure 1. We

begin with a set of roughly-connected images that repre-
sent a single a monument or geographic site. Appearance
techniques and geotags can be used to obtain such image
components from larger datasets as explained in Section 2.
Alternatively, images of a particular site may be captured
or collected specifically for image based modeling, e.g. for
digital heritage applications. We first extract SIFT features
from these images and sort them based on their scales. Our
algorithm then operates in following main stages.

Coarse Model Estimation In this stage, we estimate a
coarse global model of the scene using only the high-scale
SIFTs of given images. Given the coarse model, the recon-
struction problem is formulated as stages of simultaneously
adding remaining cameras and then simultaneously adding
remaining points to this model. This breaks the essential se-
quentiality of incremental SfM and provides a mechanism
to get faster results by using more compute power.

Adding Cameras Camera addition stage estimates cam-
era poses for images that could not be added to the coarse
model using high-scale SIFTs. We use image localization
strategy involving 3D-2D matching [8, 4, 9, 10] for this
stage. Since camera pose is estimated using direct 3D-2D
correspondences between given image and the model, im-
ages can be localized independently of each other.

Adding Points Point addition stage enriches the coarse
reconstruction by matching and triangulating remaining
SIFT features. This stage exploits the camera poses recov-
ered in earlier stages in two ways. First , it avoids exhaustive
pairwise image matching by matching only the image pairs
connected by 3D points. Second, it leverages the epipolar
constraints for fast guided feature search. Our point addi-
tion stage recovers denser point clouds as guided match-
ing helps to retain many valid correspondences on repetitive
structures. Such features are discarded in standard matching
where ratio-test is performed before geometric verification.

Our approach converges to full-models reconstructed us-
ing traditional pipelines in 1-2 iterations of above steps.
Since we begin with a global coarse model, our method
does not suffer from accumulated drifts, making incremen-
tal bundle adjustment optional in later steps of our pipeline.

3.1. Terminology

We borrow and extend the terminology used in previ-
ous papers [4, 10, 12]. Let I = fI1; I2; :::; Ing be the set
of input images. Each image Ii contains a set of features
Fi = ffkg, each feature represents a 2D point and has a
128-dim descriptor associated with it. Let M = hP;Ci de-
note the 3D model which we wish to approximate, where
P = fP1; P2; � � � ; Pmg is the set of 3D points and C =
fC1; C2; � � � ; Cng is the set of cameras. The coarse model
is denoted as M0. Subsequently in ith iteration, the models
after the camera addition (localization) and point addition
stages are denoted as Ml

i and Mi respectively.
An image Ii gets upgraded to a camera Ci when its pro-

jection matrix is estimated, giving a one-to-one mapping
between images and cameras. We use the terms camera Ci

and image Ii interchangeably according to the context. A
feature f gets upgraded to a point P when its 3D coor-
dinates are known. However, corresponding features are
projections of the same point in different cameras giving a
one-to-many mapping. We define this one-to-many map-
ping as Track of a point. Track(Pk) would map point Pk
to a set f(Ci; fj)g, where the features fj’s are projections of
the point Pk in cameras Ci. Similar to [12], we define two
mappings Points(:) and Cameras(:). Points(Ci) indi-
cates a subset of P consisting of all points visible in camera
Ci and Cameras(Pj) indicates a subset of C consisting of
all cameras that see point Pj .

4. Coarse Model Estimation

Feature Selection We select only top �% features ranked
by scale from each image for coarse reconstruction. High-
scale feature points are detected at lower-resolution in the
scale-space pyramid and correspond to more stable struc-
tures. Figure 2a shows the distribution of reconstructed fea-
tures vs. their percentile rank by scale for four models re-
constructed using Bundler [12]. Higher-scale points clearly
are part of more 3D points. The area under the curve is high
for � value of 10–30. Choosing these features for coarse
model reconstruction would enable us to recover many 3D
points. Figure 2b shows the number of 3D point tracks that
would survive if the top 20% and bottom 20% features by
scale are removed from the tracks. The high-scale features
are clearly more important than the low- scale ones, as more
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Figure 3: Analysis of triangulated features by scales in reconstructed models: (a) illus-
trates the distribution of triangulated features vs. their percentile scale rank, (b) illustrates
the effect of removing high vs. low scale features on total number of triangulated points.
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Figure 5: Fraction of connected image pairs
at different stages of our pipeline vs. Visu-
alSFM with preemptive matching (PM).

points are dropped when they are removed. It also indicates
that high-scale features not only match well but they also
match more frequently to other features of higher scales.
These observations motivated us to choose the top �% fea-
tures ordered by scale for coarse model estimation.

Model Reconstruction Any robust SfM method can be
used to reconstruct the coarse model using high-scale �%
features. For our experiments, publicly available incremen-
tal SfM packages Bundler [12] and VisualSFM [6] are used.
These methods start with match-graph construction using
pairwise image matching. Since we use only �% features,
this is done relatively quickly (nearly 100=� times faster)
for components of � 1000 images. For larger datasets, ap-
pearance or geo-location based techniques should be used to
quickly eliminate distant pairs prior to �% feature matching.

We denote the recovered model as M0 = hC0;P0i,
where C0 is the set of pose estimated (localized) images
and P0 is the set of 3D points mapped to triangulated fea-
ture tracks. The model M0 is coarse but global. That is, C0
and P0 would have fewer cameras and 3D points as com-
pared to full reconstruction that uses all features. In our
experiments, M0 contained 60%-90% of the cameras of the
full construction and roughly �% of the 3D points. The
coarse model, however, contains enough information to add
remaining cameras and points in subsequent stages.

Run-time Analysis The complexity for kd-tree based
pairwise feature matching is O(n2m logm), for n images
and m features per image. Most literature on SfM ignores
m, assuming it to be a small constant. However, typical im-
ages have tens of thousands of features and m does have
a significant impact on runtime. Since we use only �% of
features, the coarse model estimation is very fast. In our
experiments, a few hundred images could be processed in
about 30 minutes to a few hours on a single CPU core.

5. Adding Cameras to the Model

The coarse modelM0 will have several un-registered im-
ages and a large number of features without 3D coordinates.
We enrich this model by registering more images in this
step. This step is later repeated every time after a point addi-
tion step is performed. Registering a new image to an exist-
ing SfM model is the localization problem [4, 10, 8, 9]. As
we have sufficient global model information, we can local-
ize images independently and in parallel, in contrast to the
traditional incremental SfM process. We use a direct 3D-2D
matching approach for localization. The mean SIFTs [4, 8]
of 3D points are matched to SIFT descriptors of 2D features
in the image being localized. We compute a kd-tree of all
SIFT descriptors in the query image for efficient searching
and use ratio test to confirm the matching. Upon obtain-
ing sufficient number of 3D-2D matches, RANSAC based
camera calibration is performed.

The coarse modelM0 has fewer 3D points and can be di-
rectly used for localization. However, the model Mi in later
iterations is dense in 3D points due to point addition, mak-
ing it heavy for fast 3D-2D search. We compute a reduced
set of points that cover each camera at least k (300-500)
times [4]. The reduced point set spans the entire scene and
can localize images from all sides quickly. Our localization
is similar to the method of Li et al. [4] and takes around 1 to
5 seconds to localize a single image. [10, 8, 9, 11] suggest
improvements over this method.

By addition of newly localized cameras, the model
Mi = hCi;Pii upgrades to an intermediate model Ml

i =
hCi+1;Pii. For each localized camera Cq , we have the
inlier 3D-2D correspondences (Pj $ fk). We update all
Track(Pj)’s to contain (Cq; fk) after adding each camera
Cq . Each new camera has a few (10 to 20) points at this
stage. More points are added for all pose-estimated cameras
in the point addition stage as explained in the next section.
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6. Adding Points to the Model
The point addition stage updates the model Ml

i =
hCi+1;Pii toMi+1 = hCi+1;Pi+1i by triangulating the un-
matched features of images in Ci+1. The model after first
camera addition step is nearly complete in cameras but con-
sists of points corresponding to only �% high-scale features
of localized cameras. After the first point addition step, the
model is dense in points. This step is repeated after every
round of camera addition to triangulate and merge features
of the newly added cameras. This is done to ensure that un-
localized cameras can form 3D-2D connections with newly
localized cameras too in the upcoming camera addition step.
The point addition stage consists of three sub-steps. We ex-
plain these individual steps in detail.

6.1. Finding Candidate Images to Match

Given a set of images of a monument or a site, each im-
age would find sufficient feature matches with only a small
fraction of total images; those looking at common scene el-
ements. Ideally we would like to limit our search to only
these candidate images. We use the point-camera visibility
relations of the modelMl

1 = hC1;P0i to determine whether
or not two images are looking at common scene elements.

Let Iq denote the query image and Fq = ff1; f2; :::; fmg
denote the features that we wish to match and triangulate.
Traditionally we would attempt to match the features in im-
age Iq with the features in set of all localized images IL
where, IL = fIi jCi 2 C1; Ci 6= Cqg. However, we
wish to match the features in query image Iq with fea-
tures in only a few candidate images that have co-visible
points with image Iq . We define the set of all co-visible
points between two images Ii and Ij as, Pcv(Ii; Ij) =
Points(Ci) \ Points(Cq). Using this visibility relations,
we define the set of candidate images for image Iq as,
Sq = fIi j jPcv(Iq; Ii)j > Tg. We select only top-k
candidate images ranked based on the number of co-visible
points. Our experiments show it is possible to converge to
a full match-graph of exhaustive pair-wise matching even
when the number of candidate images k is limited to only
10% of the total images. Please see Figure 5 and Section 7
for more discussion. We find unique image pairs from can-
didate image sets for all query images and match these pairs
in parallel using fast guided matching.

6.2. Geometry guided Matching

Given a query image Iq and its candidate set Sq , we
use a guided matching strategy to match the feature sets
(Fq; Fcj Ic 2 Sq). In traditional feature matching each
query feature in Fq is compared against features in candi-
date image using a kd-tree of features in Fc. If epipolar
geometry between two images is known, this search can be
further optimized. Since query image Iq and candidate im-
age Ic both are localized, their camera poses are known.

Given the intrinsic matrices Kq , Kc, rotation matrices Rq ,
Rc, and translation vectors tq , tc, the fundamental matrix
Fqc between image pair Iq and Ic can be computed as,

Fqc = K�T
q Rq[R

T
c tc �RT

q tq]�R
T
c K

�1
c : (1)

Given the fundamental matrix, we compare each query
feature to only a small subset of candidate features, those
close to the epipolar line ( within 4 pixels). We use a
fast O(1) algorithm instead of O(Fc) linear search to find
this subset approximately. The details of this algorithm are
given in the supplementary material. There are two main
advantages of our guided search strategy. (i) The number
of features near epipolar line is typically a small fraction
(� 0.05) of total points jFcj, reducing the time for SIFT
descriptor distance computations per image pair signifi-
cantly. (ii) Traditional feature matching considers all fea-
tures in target image for ratio-test, which discards many true
correspondences on repetitive structures along with noisy
matches. Since we perform ratio-test only among a subset
of features close to epipolar line, we are able to retain corre-
spondences on repetitive structures. This is also reflected in
denser point clouds recovered using our method (Table 1).

6.3. Triangulation and Merging

After pairwise image matching is performed, we form
tracks for features in a query image by augmenting matches
found in all candidate images and triangulate these feature
tracks using a standard least mean squared error method.
We perform this operation independently for all images.
This would typically results in duplication of many 3D
points because a triangulated feature pair (Ci; fk) $
(Cj ; fl) for image Ci would also match and triangulate in
reverse order for image Cj . Also, since we limited our
matching to only candidate images, the longest track would
only be as long as the size of the candidate set. We solve
both of these problems in our merging step.

We create a graph of all matching features. Each ver-
tex denotes an image-feature pair (Cj ; fk) and an edge be-
tween two vertices denote that they are part of a triangu-
lated track. We find connected components in this graph to
find super-tracks. This step uses transitivity to join feature
matches, allowing us to extend our tracks beyond only the
candidate images considered during matching. We prevent
tracks from merging due to noisy matches by using a sim-
ple check: if an image contributes two or more features in
a component, the image is discarded from that component
[1]. Each connected component (i.e. set of all (Ci; fk)) is
then triangulated again as a single track.

We use a standard sequential graph algorithm to find
connected-components which is reasonably fast. It is possi-
ble to substitute our sequential implementation with a faster
multi-core CPU or many-core GPU implementation.
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7. Qualitative and Run-time Analysis

In this section, we evaluate our method and com-
pare quantitative results and runtime performance with re-
lated methods. The supplementary video visually demon-
strates the quality of reconstruction at each step of our our
pipeline. We use our method to reconstruct single compo-
nent datasets of a few hundred to a few thousand images.
We reconstruct various monuments from publicly available
Rome16K1 dataset. We report the number of available im-
ages for all datasets in Imgs. column in Table 1. We use
Lowe’s binary for SIFT computation and publicly available
tools Bundler and VisualSFM for coarse model reconstruc-
tion using high-scale features to seed our method. We also
use these tools to generate full-scale models using all fea-
tures and show that our approach is comparable or better in
quality of reconstruction while being embarrassingly paral-
lel and fast. Please visit our project page2 for supplementary
material, codes, and more information.

Match-graph Comparison We measure the number of
connected image pairs in bundler’s reconstructions of sev-
eral datasets using all features and exhaustive pairwise im-
age matching and report these in Pairs column in Table 1.
We also measure the image pair connections in 3D mod-
els reconstructed using our method as well as VisualSFM
with preemptive matching (PM) and report these as frac-
tions of bundler’s connections for respective datasets in %
Pairs columns in Table 1. The number of connected im-
age pairs in our final models are close to bundler’s models
that utilized exhaustive pair-wise matching. For St. Peters
Interior dataset, we are able to connect even more image
pairs than bundler. Consequently, we also achieve many
more 3D points for this dataset. This is a direct result
of our geometry-guided matching which outperforms ratio-
test based matching followed by geometric verification in
presence of repetitive structures.

The green plot in Figure 5 shows how the number of im-
age connections grow at different stages of our pipeline as a
fraction of bundler’s connections. It can be seen that despite
using only �% high-scale features, we are able to recover
about 40% � 60% of total image connections during the
coarse model estimation step itself. Image connections con-
tinue to grow during the subsequent camera and point ad-
dition stages and finally approximate the full match-graph.
The red plot in Figure 5 shows the fraction of image connec-
tions for output of VisualSFM with preemptive matching
enabled. Preemptive matching [6] attempts to match h top-
scale feature between two images and performs full feature
matching only if at least th features match. For all reported
results of VisualSFM+PM, h = 100 and th = 4 as per [6].

1http://www.cs.cornell.edu/projects/p2f/
2http://cvit.iiit.ac.in/projects/multistagesfm/

Since matching is frozen at this point, crucial image connec-
tions that are missed due to preemptive matching cannot be
recovered later during reconstruction. This can lead to frag-
mented models. Our multistage approach, where match-
ing is intertwined with reconstruction, continues to recover
more image connections throughout the pipeline, reducing
the chances of fragmentation significantly.

Qualitative and Quantitative Results Figure 6 shows
coarse and final models for different datasets. Table 1 re-
ports the statistics for reconstruction of all datasets by our
approach, bundler and VisualSFM with PM. Our method is
able to recover nearly 90% of cameras recovered by bundler
for most datasets. It is worth noting that the number of 3D
points and the number of 3D points with higher track length
(Pts3+) are significantly higher in most of our models as
compared to bundler and VisualSFM with PM. This is a di-
rect result of geometry-aware feature matching.

We use RANSAC to align cameras obtained through our
method without BA with the cameras of full reconstruc-
tion output of bundler which uses incremental BA. For all
datasets, we observe that the translation error between cor-
responding cameras is minimal in relation to the scale of
respective model. The absolute and relative errors are re-
ported in Table 2. Scale of the model is estimated by mea-
suring the diameter of bounding box of cameras in Bundler
output. Since 75 percentile errors are also very small, it
shows that majority of cameras align accurately with stan-
dard output produced with repeated BA. Performing a bun-
dle adjustment on our models does not improve upon this
error. Since, we already begin with a bundle adjusted coarse
model with global coverage, we do not observe any drift in
our experiments without performing bundle adjustment.

Limitations Our method performs slight poorly as com-
pared to bundler in terms of number of registered cameras.
This is a direct side-effect of using only 3D-2D matches for
localization. In presence of repetitive structures (e.g. the
‘dome’ of pantheon) , the ratio test based 3D-2D correspon-
dence search fails more often and cameras do not localize
due to insufficient correspondences. A future direction to
improve the localization performance would be to use a hy-
brid scheme, where a few 3D-2D matches are also identified
by 2D-2D matching to only a few nearby images.

The success of our framework largely depends on the
coverage of the coarse model. For weakly connected
datasets, sometimes the coarse reconstruction can only rep-
resent a part of the modeled space. In this case, point and
camera addition stages can only enrich the partial model and
not complete it. One solution would be to handle weakly
connected datasets as multiple overlapping components, re-
cover separate models using our framework and combine
them using shared cameras. We discuss this further in sup-
plementary material.
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(a) St. Peters Interior
Coarse Reconstruction

jCj = 800 jPj = 54K

(b) St. Peters Interior
After Adding Points and Cameras

jCj = 889 jPj = 420K

(c) St. Peters Exterior
Coarse Reconstruction

jCj = 925 jPj = 51K

(d) St. Peters Exterior
After Adding Points and Cameras

jCj = 1108 jPj = 504K

(e) St. Peters Interior

� = 20% jCj = 926 jPj = 416K

(f) Pantheon Exterior

� = 20% jCj = 780 jPj = 211K

(g) Colosseum

� = 20% jCj = 1657 jPj = 967K

Figure 6: Reconstruction results of our method for different datasets and � values

Ours � = 10% Ours � = 20% Bundler VisualSFM with PM
Datasets Imgs Cams Pts Pts 3+ % Pairs Cams Pts Pts 3+ % Pairs Cams Pts Pts 3+ Pairs Cams Pts Pts 3+ % Pairs
Pantheon Int. 587 480 210K 124K 81.7% 538 241K 144K 98.4% 574 126K 57K 133964 466 52K 26K 74.7%
Pantheon Ext. 782 772 211K 87K 90.2% 780 211K 87K 95.0% 782 259K 124K 606778 777 117K 53K 99.0%
St. Peters Int. 953 889 420K 158K 94.1% 926 416K 134K 104.1% 950 301K 140K 454660 901 105K 56K 81.5%
St. Peters Ext. 1155 1108 504K 194K 86.7% 1126 495K 191K 92.1% 1154 380K 180K 1150268 1138 123K 64K 82.7%

Table 1: Comparison of results with Bundler and VisualSFM

Runtime Performance Unlike previous methods, we
cannot report match-time and reconstruction time sepa-
rately because matching is embedded in our reconstruction
pipeline. Table 3 shows the timing performance of Bundler,
VisualSFM with preemptive matching (PM), and our frame-
work. These include matching and reconstruction time. We
provide detailed bifurcation of timing for each stage in our
pipeline in supplementary material.

It is unfair to directly compare speed up of our method
over bundler. Bundler has a sequential pipeline which es-
sentially executes on a single core whereas our pipeline is
embarrassingly parallel. It is also not straightforward to di-
rectly compare timing of our CPU implementation with Vi-
sualSFM which leverages multicore GPU architecture for
many of its steps. Hence, we report the time taken by our
framework to reconstruct models under varying levels of
parallelism in Table 3. Third column in Table 3 shows the
timing performance of our framework when maximum par-
allelism is utilized on a 216-core cluster. For these obser-

vations, coarse reconstruction was done using VisualSFM
without preemptive matching. Timings for this step are also
included in the final observations. Our runtime is on par
with or better than VisualSFM with PM (column 2) when
maximum parallelism is utilized.

The timings in fifth column show that our framework
is significantly faster than bundler (column 6) even when
run sequentially on a single machine. For this comparison,
�% feature matching and coarse reconstruction are also per-
formed sequentially using bundler on a single-core. Our
single-core runtime also outperforms VisualSFM without
preemptive matching for pantheon interior dataset. Visu-
alSFM without PM took close to 9 hours and 42 minutes for
reconstruction. For other datasets, execution of VisualSFM
without PM failed due to memory limitations.

VisualSFM implementation was run on a machine with
Intel Core i7 (2.67GHz) CPU and Nvidia GTX 580 GPU.
Our CPU implementation was run on a cluster with 9 com-
pute nodes each with 12 hyper-threaded Intel 2.5GHz cores.
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Absolute Errors Error/Diameter
Datasets Med. 75%ile Max. Med. 75%ile Max.
Pantheon Int. 0.106 0.171 1.066 0.006 0.01 0.064
Pantheon Ext. 0.017 0.024 3.562 0.003 0.004 0.66
St. Peters Int. 0.242 0.319 8.32 0.002 0.003 0.08
St. Peters Ext. 0.308 0.513 5.16 0.01 0.02 0.26

Table 2: Camera errors between our models and Bundler’s.

VSFM Our Approach Bundler

Datasets With PM Max.
Parallel 8-core Single

Core
Single
Core

Pantheon Interior 19m 26m 69m 6h 48m 1d 12h
Pantheon Exterior 110m 60m 97m 12h 43m 6d 15h
St. Peters Interior 81m 51m 107m 15h 13m 5d 21h
St. Peters Exterior – 121m 181m 1d 8h 12d 2h

Table 3: Runtime of our framework, VisualSFM+PM and
Bundler. Please refer to the supplementary material for bifurca-
tion of runtime per stage in our framework for all reconstructions.

8. Conclusion and Future Work

In this paper, we presented a fast multistage SfM al-
gorithm as an alternative to the basic incremental struc-
ture from motion step of large scale 3D reconstruction
pipeline. Our approach breaks the sequentially of incre-
mental SfM approach by leveraging geometry of the coarse
global model. Our algorithm estimates a coarse model as
the first step which gives us a sparse but global coverage
of the model space. Adding more cameras and points to
this coarse model are fully parallel operations performed
independently for each image. Our approach is thus sig-
nificantly faster than state-of-the-art methods and produces
similar quality results with denser point clouds. In future,
we would like to improve our camera localization step to
make it robust to repetitive structures. We also wish to port
our framework to many-core architectures like GPU for fur-
ther speed up and explore real-time reconstruction appli-
cations. Since, our approach produces denser models, we
wish to examine the possibility of extending our framework
for performing fast multi-view stereo.
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